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On the elastic-plastic torsion problem 
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SUMMARY 
It is shown that solving the elastic-plastic torsion problem is equivalent to solving a nonlinear boundary value problem. 
The equivalence is valid for a strictly convex cross-section and angles of twist large enough that the plastic region 
encloses the elastic region. The advantage of this formulation is that no free boundaries are present. 

1. Introduction 

In the torsion problem for a prismatic elastic-plastic bar, a stress function gt(x, y) is sought satis- 
fying 

V27 t = -2GO,  (1) 

when IV~l 2 < k 2. Otherwise, 

IVgt[ 2 = k 2. (2) 

]V~q 2 > k 2 is not allowed. In (1) and (2), G is the elastic shear modulus, k is the yield stress in 
shear, and 0 is the angle of twist per unit length of the bar. An unknown elastic-plastic boundary 
separates the regions in which (1) and (2) apply. Across this boundary, ~ a n d  its first derivatives 
are continuous. Finally, for a simply-connected cross-section, ~ = 0 on the cross-section 
boundary. For  a detailed discussion of this problem, see [ 1]. 

The essential difficulty in this problem is that the regions in which (1) and (2) hold are not 
known in advance. Thus, this problem is analytically difficult, in spite of the fact that solving 
either (1) or (2) in any given known region is not. Only two solutions appear to be known 
explicitly: the solution for a circular cross-section, and a solution found by Sokolovsky for a 
certain one-parameter family of cross-sections. Both are discussed in [-1]. 

In this paper, we show that solving the elastic-plastic torsion problem is equivalent to solving 
a nonlinear boundary value problem. The equivalence is valid when 

(a) the cross-section is strictly convex 
(b) the elastic region lies entirely inside the plastic region. 

Restriction (b) also applies to Sokolovsky's solution. The advantage of this formulation is that 
the original problem involving a free boundary is replaced by a problem involving known 
boundaries only. 

The equivalence of the problems is developed in Section 2. In Section 3, Sokolovsky's 
solution is rederived from this point of view. In what follows the results in [ 1 ], particularly those 
concerning the solution of (2), are used without proof. 
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2. Analysis 

Let the cross-section boundary be described parametrically by the equations 

x = Xo(q~), y = yo(q~). (3) 

The parameter q5 is the angle between the x-axis and the normal to the curve (3) at the point x 
= Xo(dp),y = y0(qS); see Figure 1. Analytically, 

R.  R u b i n s t e i n  

Figure 1. 

tan q5 = - X'o(O)/Y'o(4)). (4) 

The curve (3) admits this parametrization only if it encloses a convex region and does not 
contain any straight line segments; otherwise, values of q5 are not in one to one correspondence 
with the boundary points. If the parametrization (3), (4) is not possible, this method of solution 
does not apply. 

As in Figure 1, denote by d(q~) the distance between the point x = Xo((O),y = yo(q~) and the 
elastic-plastic boundary measured along the normal to the cross-section boundary. Then the 
elastic-plastic boundary has the parametric form 

x = Xo(qS) - d(0) cos ~b, y = yo(q~) - d(qS) sin 4). 

The elastic region is assumed to be enclosed entirely by the plastic region. Therefore, the 
values of the elastic stress function gt(x, y) and its derivatives are known on the elastic-plastic 
boundary. In view of the definition of q5 and the solution of equation (2), 

7t((o) = + kd((a), ~ ((o) = - k cos q~, ~ (q~) = - k sin qS. (5) 
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Define 

u(x, y) = ~(x, y)/k. 

Note that u has the dimensions of length. Let p = 3u/c3x, q = ~?u/~y. Then (5) becomes 

u(qS) = + d(qS), p(qS) = - cos ~b, q(qS) = - sin qS. (6) 

Now apply the Legendre transform/ttion 

X = p, Y =  q, U = xp  + yq - u, P = x, Q = y. 

Since the plastic stress function satisfies (2), the elastic-plastic boundary is transformed into the 
unit circle X 2 + y2 = 1. In terms of polar coordinates R, O in the X-Yplane,  tan O - Y/X  

= q/p. Therefore, in view of (6), on the unit circle, 

tan O = tan qS. (7) 

The elastic equation (1) is transformed to 

v2u  = - 2 ~  Tf~ @ x ~ g /  J k. (8) 

Because of  (7), the boundary conditions on (8) are 

- g ( o )  = cos O[xo(O) - d(O) cos O] + sin O[yo(O ) - d(O) sin O] + d(O) 

= cos Oxo(O ) + sin Oyo(O ). (9) 

Thus, the boundary conditions only involve the known functions x o andy o. 
Of course, the function u(x, y) is unknown. Suppose, however, that the solution of(8) and (9) is 

known. Then u can be found by inverting the Legendre transformation: solve 

x = P(X,  Y), y = Q(X, Y) (10) 

for X and Yand then substitute into u = X P  + YQ - U. 

To complete the solution, the elastic-plastic boundary is required. In the X - Y  plane, the 
elastic.plasticboundaryistheunitcircleX 2 + y 2 =  1;tofinditsequationsinthex-yplane,  use 

(7) and the formulas P = x, Q = y: 

U (cos O, sin O), x(O) = P(O) = T2-  

OU 
y(O) = Q(O) = 7Y-  (cos O, sin O). (11) 

Both functions on the right sides in (11) are known from the solution of(8) and(9). 
Thus, solution of the original free boundary problem is replaced by the solution of equation 

(8) subject to boundary conditions (9) on the unit circle. 
This formulation suggests an inverse method for the elastic-plastic torsion problem. Suppose 

that solutions of(8) are known which have boundary values independent of 0 on the unit circle. 
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Then a possible cross-section boundary could be found from (9). So far, however, we are unable 
to find any such solution of(8) other than one leading to Sokolovsky's solution. 

A number of free boundary problems have been treated by transforming the unknown 
boundary into a known boundary. One example is the elastic-plastic antiplane shear problem; 
see [-23 and the references there. For the problem of water see page through the ground, see [-33. 
The idea seems to be due originally to Kirchhoff, who applied it in the free streamline problem in 
the theory of potential flow [--43. 

3. S o k o l o v s k y ' s  s o l u t i o n  

The cross-sectional boundary in parametric form [1] is 

x = ( b + 3 c )  c o s q S - c c o s  3~b, y = b s i n ~ b + c s i n  3~b. 

Therefore, in the X-Yplane, (8) must be solved subject to the boundary condition 

- U(cos O, sin O) = (b + 3c) cos 2 0  - c cos g O + b sin 2 0  + c sin g O 

= (b + c) + c cos a O (12) 

when R = 1. Assume a solution of(8) of the form 

U(X ,  Y) = ocX e + / / y 2  + 7. (13) 

Then substituting into (8), 

c~ + fl = - 4(G/k)Oc~fl. (14) 

Equation (13) satisfies the boundary condition (12) if 

- [-(7 + fl) + (c~ - fl) cos 2 0 ]  = (b + c) + c cos 20 .  

Therefore, 

7 + f l = - ( b + c ) ,  - e + f l = c .  (15) 

Solving (14) and (15), 

~} k _ c  ~/ k 2 c 2 
- 4GO + 2 -  i6G202 + 4 "  (16) 

The function u(x, y) is found by solving (10). Substituting (13) into (10), 

x = P = 2 c ~ X ,  y = Q = 2 f l Y .  

Therefore 

=ix2 u(x,y) = X P  + YQ - U 4c~ + y2 _ 7. (17) 

The elastic-plastic boundary is found from (11). It is the ellipse 

x(O)  = 2c~ cos O, y(O) = 2//sin O. (18) 
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Note that the elastic stress function defined by (16) and (17) and the elasjtic-plastic boundary (18) 
agree with the formulas of [1] p. 74. 

Acgnowledgment 

The financial support of the AFOSR, through Dr. J. Edmund Fitzgerald, is gratefully 
acknowledged. 

R E F E R E N C E S  

[1] W. Prager and P. G. Hodge, Jr., Theory of Perfectly Plastic Solids, Dover (1968). 
[2] J. R. Rice, Contained plastic deformation near cracks and notches under longitudinal shear. Int. J. Fracture 

Mechanics, 2 (1967) 426-447. 
[3] B. Davison and L. Rosenhead, Some cases of steady two-dimensional percolation of water through ground. Proc. 

Roy. Soc. A175 (1940) 346-365. 
[4] H. Lamb, Hydrodynamics, Dover (1945). 

Journal of Engineerinfl Math., Vol. 11 (1977) 319 323 


